Pullback of sheaves #
Main definitions #
-
CategoryTheory.Functor.sheafPullback
: the functorSheaf J A ⥤ Sheaf K A
obtained as an extension of a functorG : C ⥤ D
between the underlying categories. -
CategoryTheory.Functor.sheafAdjunctionContinuous
: the adjunctionG.sheafPullback A J K ⊣ G.sheafPushforwardContinuous A J K
when the functorG
is continuous. In caseG
is representably flat, the pullback functor on sheaves commutes with finite limits: this is a morphism of sites in the sense of SGA 4 IV 4.9.
instance
CategoryTheory.instCreatesLimitsSheafInstCategorySheafFunctorOppositeOppositeCategorySheafToPresheaf
{C : Type v₁}
[CategoryTheory.SmallCategory C]
(A : Type u₁)
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
[CategoryTheory.Limits.HasLimits A]
:
Equations
instance
CategoryTheory.instIsCofilteredCoverSmallCategoryInstPreorderCover
{C : Type v₁}
[CategoryTheory.SmallCategory C]
(J : CategoryTheory.GrothendieckTopology C)
{X : C}
:
Equations
@[simp]
theorem
CategoryTheory.Functor.sheafPullback_map
{C : Type v₁}
[CategoryTheory.SmallCategory C]
{D : Type v₁}
[CategoryTheory.SmallCategory D]
(G : CategoryTheory.Functor C D)
(A : Type u₁)
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
(K : CategoryTheory.GrothendieckTopology D)
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
:
∀ {X Y : CategoryTheory.Sheaf J A} (f : X ⟶ Y),
(CategoryTheory.Functor.sheafPullback G A J K).toPrefunctor.map f = (CategoryTheory.presheafToSheaf K A).toPrefunctor.map ((CategoryTheory.lan G.op).toPrefunctor.map f.val)
@[simp]
theorem
CategoryTheory.Functor.sheafPullback_obj
{C : Type v₁}
[CategoryTheory.SmallCategory C]
{D : Type v₁}
[CategoryTheory.SmallCategory D]
(G : CategoryTheory.Functor C D)
(A : Type u₁)
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
(K : CategoryTheory.GrothendieckTopology D)
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
(X : CategoryTheory.Sheaf J A)
:
(CategoryTheory.Functor.sheafPullback G A J K).toPrefunctor.obj X = (CategoryTheory.presheafToSheaf K A).toPrefunctor.obj ((CategoryTheory.lan G.op).toPrefunctor.obj X.val)
def
CategoryTheory.Functor.sheafPullback
{C : Type v₁}
[CategoryTheory.SmallCategory C]
{D : Type v₁}
[CategoryTheory.SmallCategory D]
(G : CategoryTheory.Functor C D)
(A : Type u₁)
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
(K : CategoryTheory.GrothendieckTopology D)
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
:
The pullback functor Sheaf J A ⥤ Sheaf K A
associated to a functor G : C ⥤ D
in the
same direction as G
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instPreservesFiniteLimitsSheafInstCategorySheafSheafPullback
{C : Type v₁}
[CategoryTheory.SmallCategory C]
{D : Type v₁}
[CategoryTheory.SmallCategory D]
(G : CategoryTheory.Functor C D)
(A : Type u₁)
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
(K : CategoryTheory.GrothendieckTopology D)
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
[CategoryTheory.RepresentablyFlat G]
:
Equations
- One or more equations did not get rendered due to their size.
def
CategoryTheory.Functor.sheafAdjunctionContinuous
{C : Type v₁}
[CategoryTheory.SmallCategory C]
{D : Type v₁}
[CategoryTheory.SmallCategory D]
(G : CategoryTheory.Functor C D)
(A : Type u₁)
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
(K : CategoryTheory.GrothendieckTopology D)
[CategoryTheory.ConcreteCategory A]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget A)]
[CategoryTheory.Limits.HasColimits A]
[CategoryTheory.Limits.HasLimits A]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget A)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget A)]
[CategoryTheory.Functor.IsContinuous G J K]
:
The pullback functor is left adjoint to the pushforward functor.
Equations
- One or more equations did not get rendered due to their size.