The category of commutative additive groups has images. #
Note that we don't need to register any of the constructions here as instances, because we get them
from the fact that AddCommGroupCat
is an abelian category.
the image of a morphism in AddCommGroupCat
is just the bundling of AddMonoidHom.range f
Equations
Instances For
the inclusion of image f
into the target
Equations
Instances For
instance
AddCommGroupCat.instMonoAddCommGroupCatInstAddCommGroupCatLargeCategoryImageι
{G : AddCommGroupCat}
{H : AddCommGroupCat}
(f : G ⟶ H)
:
Equations
- (_ : CategoryTheory.Mono (AddCommGroupCat.image.ι f)) = (_ : CategoryTheory.Mono (AddCommGroupCat.image.ι f))
the corestriction map to the image
Equations
Instances For
noncomputable def
AddCommGroupCat.image.lift
{G : AddCommGroupCat}
{H : AddCommGroupCat}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
AddCommGroupCat.image f ⟶ F'.I
the universal property for the image factorisation
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AddCommGroupCat.image.lift_fac
{G : AddCommGroupCat}
{H : AddCommGroupCat}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
the factorisation of any morphism in AddCommGroupCat
through a mono.
Equations
Instances For
the factorisation of any morphism in AddCommGroupCat
through a mono has
the universal property of the image.
Equations
- AddCommGroupCat.isImage f = CategoryTheory.Limits.IsImage.mk AddCommGroupCat.image.lift
Instances For
noncomputable def
AddCommGroupCat.imageIsoRange
{G : AddCommGroupCat}
{H : AddCommGroupCat}
(f : G ⟶ H)
:
The categorical image of a morphism in AddCommGroupCat
agrees with the usual group-theoretical range.