The category of abelian groups is abelian #
In the category of abelian groups, every monomorphism is normal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
In the category of abelian groups, every epimorphism is normal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The category of abelian groups is abelian.
Equations
- AddCommGroupCat.instAbelianAddCommGroupCatInstAddCommGroupCatLargeCategory = CategoryTheory.Abelian.mk
theorem
AddCommGroupCat.exact_iff
{X : AddCommGroupCat}
{Y : AddCommGroupCat}
{Z : AddCommGroupCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
instance
AddCommGroupCat.instPreservesFiniteLimitsFunctorAddCommGroupCatInstAddCommGroupCatLargeCategoryCategoryColimHasColimitsOfShapeOfHasColimitsOfSizeInstHasColimitsOfSizeAddCommGroupCatMaxInstAddCommGroupCatLargeCategory_3
{J : Type u}
[CategoryTheory.SmallCategory J]
[CategoryTheory.IsFiltered J]
:
CategoryTheory.Limits.PreservesFiniteLimits CategoryTheory.Limits.colim
The category of abelian groups satisfies Grothedieck's Axiom AB5.
Equations
- One or more equations did not get rendered due to their size.