Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf

Presheaves of modules over a presheaf of rings. #

We give a hands-on description of a presheaf of modules over a fixed presheaf of rings, as a presheaf of abelian groups with additional data.

Future work #

structure PresheafOfModules {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (R : CategoryTheory.Functor Cᵒᵖ RingCat) :
Type (max (max (max u u₁) (v + 1)) v₁)

A presheaf of modules over a given presheaf of rings, described as a presheaf of abelian groups, and the extra data of the action at each object, and a condition relating functoriality and scalar multiplication.

  • module : (X : Cᵒᵖ) → Module (R.toPrefunctor.obj X) (self.presheaf.toPrefunctor.obj X)
  • map_smul : ∀ {X Y : Cᵒᵖ} (f : X Y) (r : (R.toPrefunctor.obj X)) (x : (self.presheaf.toPrefunctor.obj X)), (self.presheaf.toPrefunctor.map f) (r x) = (R.toPrefunctor.map f) r (self.presheaf.toPrefunctor.map f) x
Instances For

    The bundled module over an object X.

    Equations
    Instances For

      If P is a presheaf of modules over a presheaf of rings R, both over some category C, and f : X ⟶ Y is a morphism in Cᵒᵖ, we construct the R.map f-semilinear map from the R.obj X-module P.presheaf.obj X to the R.obj Y-module P.presheaf.obj Y.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem PresheafOfModules.map_apply {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} (P : PresheafOfModules R) {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) (x : (PresheafOfModules.obj P X)) :
        (PresheafOfModules.map P f) x = (P.presheaf.toPrefunctor.map f) x
        Equations
        • One or more equations did not get rendered due to their size.

        A morphism of presheaves of modules.

        • hom : P.presheaf Q.presheaf
        • map_smul : ∀ (X : Cᵒᵖ) (r : (R.toPrefunctor.obj X)) (x : (P.presheaf.toPrefunctor.obj X)), (self.hom.app X) (r x) = r (self.hom.app X) x
        Instances For

          The identity morphism on a presheaf of modules.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Composition of morphisms of presheaves of modules.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The (X : Cᵒᵖ)-component of morphism between presheaves of modules over a presheaf of rings R, as an R.obj X-linear map.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • PresheafOfModules.Hom.instAddCommGroupHomPresheafOfModulesToQuiverToCategoryStructInstCategoryPresheafOfModules = AddCommGroup.mk (_ : ∀ (a b : P Q), a + b = b + a)
                Equations
                • PresheafOfModules.Hom.instPreadditivePresheafOfModulesInstCategoryPresheafOfModules = CategoryTheory.Preadditive.mk

                The functor from presheaves of modules over a specified presheaf of rings, to presheaves of abelian groups.

                Equations
                Instances For