Quotients of Lie algebras and Lie modules #
Given a Lie submodule of a Lie module, the quotient carries a natural Lie module structure. In the special case that the Lie module is the Lie algebra itself via the adjoint action, the submodule is a Lie ideal and the quotient carries a natural Lie algebra structure.
We define these quotient structures here. A notable omission at the time of writing (February 2021) is a statement and proof of the universal property of these quotients.
Main definitions #
Tags #
lie algebra, quotient
The quotient of a Lie module by a Lie submodule. It is a Lie module.
Equations
- LieSubmodule.instHasQuotientLieSubmodule = { quotient' := fun (N : LieSubmodule R L M) => M ⧸ ↑N }
Equations
- LieSubmodule.Quotient.addCommGroup = Submodule.Quotient.addCommGroup ↑N
Equations
- LieSubmodule.Quotient.module' = Submodule.Quotient.module' ↑N
Equations
- LieSubmodule.Quotient.module = Submodule.Quotient.module ↑N
Equations
- (_ : IsCentralScalar S (M ⧸ N)) = (_ : IsCentralScalar S (M ⧸ ↑N))
Equations
- LieSubmodule.Quotient.inhabited = { default := 0 }
Map sending an element of M to the corresponding element of M/N, when N is a
lie_submodule of the lie_module N.
Equations
- LieSubmodule.Quotient.mk = Submodule.Quotient.mk
Instances For
Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there
is a natural linear map from L to the endomorphisms of M leaving N invariant.
Equations
- LieSubmodule.Quotient.lieSubmoduleInvariant = LinearMap.codRestrict (Submodule.compatibleMaps ↑N ↑N) ↑(LieModule.toEndomorphism R L M) (_ : ∀ (x : L), ∀ x_1 ∈ N.carrier, ⁅x, x_1⁆ ∈ N.carrier)
Instances For
Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there
is a natural Lie algebra morphism from L to the linear endomorphism of the quotient M/N.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given a Lie module M over a Lie algebra L, together with a Lie submodule N ⊆ M, there is
a natural bracket action of L on the quotient M/N.
Equations
- LieSubmodule.Quotient.actionAsEndoMapBracket N = { bracket := fun (x : L) (n : M ⧸ N) => ((LieSubmodule.Quotient.actionAsEndoMap N) x) n }
Equations
- One or more equations did not get rendered due to their size.
The quotient of a Lie module by a Lie submodule, is a Lie module.
Equations
- One or more equations did not get rendered due to their size.
LieSubmodule.Quotient.mk as a LieModuleHom.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- (_ : IsNoetherian R (M ⧸ N)) = (_ : IsNoetherian R (M ⧸ ↑N))
Two LieModuleHoms from a quotient lie module are equal if their compositions with
LieSubmodule.Quotient.mk' are equal.
See note [partially-applied ext lemmas].
The first isomorphism theorem for morphisms of Lie algebras.
Equations
- One or more equations did not get rendered due to their size.