Documentation

Mathlib.AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf

The structure sheaf on projective_spectrum ๐’œ. #

In Mathlib.AlgebraicGeometry.Topology, we have given a topology on ProjectiveSpectrum ๐’œ; in this file we will construct a sheaf on ProjectiveSpectrum ๐’œ.

Notation #

Main definitions and results #

We define the structure sheaf as the subsheaf of all dependent function f : ฮ  x : U, HomogeneousLocalization ๐’œ x such that f is locally expressible as ratio of two elements of the same grading, i.e. โˆ€ y โˆˆ U, โˆƒ (V โŠ† U) (i : โ„•) (a b โˆˆ ๐’œ i), โˆ€ z โˆˆ V, f z = a / b.

Then we establish that Proj ๐’œ is a LocallyRingedSpace:

References #

def AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.IsFraction {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : โ„• โ†’ Submodule R A} [GradedAlgebra ๐’œ] {U : TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ)} (f : (x : โ†ฅU) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal)) :

The predicate saying that a dependent function on an open U is realised as a fixed fraction r / s of same grading in each of the stalks (which are localizations at various prime ideals).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isFractionPrelocal {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] :
    TopCat.PrelocalPredicate fun (x : โ†‘(ProjectiveSpectrum.top ๐’œ)) => HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)

    The predicate IsFraction is "prelocal", in the sense that if it holds on U it holds on any open subset V of U.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] :
      TopCat.LocalPredicate fun (x : โ†‘(ProjectiveSpectrum.top ๐’œ)) => HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)

      We will define the structure sheaf as the subsheaf of all dependent functions in ฮ  x : U, HomogeneousLocalization ๐’œ x consisting of those functions which can locally be expressed as a ratio of A of same grading.

      Equations
      Instances For
        theorem AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.addMem' {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : โ„• โ†’ Submodule R A} [GradedAlgebra ๐’œ] (U : (TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ))แต’แต–) (a : (x : โ†ฅU.unop) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal)) (b : (x : โ†ฅU.unop) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal)) (ha : (AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction ๐’œ).toPrelocalPredicate.pred a) (hb : (AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction ๐’œ).toPrelocalPredicate.pred b) :
        theorem AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.negMem' {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : โ„• โ†’ Submodule R A} [GradedAlgebra ๐’œ] (U : (TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ))แต’แต–) (a : (x : โ†ฅU.unop) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal)) (ha : (AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction ๐’œ).toPrelocalPredicate.pred a) :
        theorem AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.mulMem' {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : โ„• โ†’ Submodule R A} [GradedAlgebra ๐’œ] (U : (TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ))แต’แต–) (a : (x : โ†ฅU.unop) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal)) (b : (x : โ†ฅU.unop) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal)) (ha : (AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction ๐’œ).toPrelocalPredicate.pred a) (hb : (AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.isLocallyFraction ๐’œ).toPrelocalPredicate.pred b) :
        def AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.sectionsSubring {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {๐’œ : โ„• โ†’ Submodule R A} [GradedAlgebra ๐’œ] (U : (TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ))แต’แต–) :
        Subring ((x : โ†ฅU.unop) โ†’ HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal (โ†‘x).asHomogeneousIdeal))

        The functions satisfying isLocallyFraction form a subring of all dependent functions ฮ  x : U, HomogeneousLocalization ๐’œ x.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The structure sheaf (valued in Type, not yet CommRing) is the subsheaf consisting of functions satisfying isLocallyFraction.

          Equations
          Instances For

            The structure presheaf, valued in CommRing, constructed by dressing up the Type valued structure presheaf.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Some glue, verifying that that structure presheaf valued in CommRing agrees with the Type valued structure presheaf.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The structure sheaf on Proj ๐’œ, valued in CommRing.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.res_apply {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] (U : TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ)) (V : TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ)) (i : V โŸถ U) (s : โ†‘((AlgebraicGeometry.ProjectiveSpectrum.Proj.structureSheaf ๐’œ).val.toPrefunctor.obj (Opposite.op U))) (x : โ†ฅV) :
                  โ†‘(((AlgebraicGeometry.ProjectiveSpectrum.Proj.structureSheaf ๐’œ).val.toPrefunctor.map i.op) s) x = โ†‘s ((fun (x : โ†ฅV) => { val := โ†‘x, property := (_ : โ†‘x โˆˆ โ†‘U) }) x)

                  Proj of a graded ring as a SheafedSpace

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    def AlgebraicGeometry.openToLocalization {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] (U : TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ)) (x : โ†‘(ProjectiveSpectrum.top ๐’œ)) (hx : x โˆˆ U) :

                    The ring homomorphism that takes a section of the structure sheaf of Proj on the open set U, implemented as a subtype of dependent functions to localizations at homogeneous prime ideals, and evaluates the section on the point corresponding to a given homogeneous prime ideal.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      The ring homomorphism from the stalk of the structure sheaf of Proj at a point corresponding to a homogeneous prime ideal x to the homogeneous localization at x, formed by gluing the openToLocalization maps.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.stalkToFiberRingHom_germ' {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] (U : TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ)) (x : โ†‘(ProjectiveSpectrum.top ๐’œ)) (hx : x โˆˆ U) (s : โ†‘((AlgebraicGeometry.ProjectiveSpectrum.Proj.structureSheaf ๐’œ).val.toPrefunctor.obj (Opposite.op U))) :
                        (AlgebraicGeometry.stalkToFiberRingHom ๐’œ x) ((TopCat.Presheaf.germ (TopCat.Sheaf.presheaf (AlgebraicGeometry.ProjectiveSpectrum.Proj.structureSheaf ๐’œ)) { val := x, property := hx }) s) = โ†‘s { val := x, property := hx }
                        @[simp]
                        theorem AlgebraicGeometry.stalkToFiberRingHom_germ {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] (U : TopologicalSpace.Opens โ†‘(ProjectiveSpectrum.top ๐’œ)) (x : โ†ฅU) (s : โ†‘((AlgebraicGeometry.ProjectiveSpectrum.Proj.structureSheaf ๐’œ).val.toPrefunctor.obj (Opposite.op U))) :
                        theorem AlgebraicGeometry.HomogeneousLocalization.mem_basicOpen {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] (x : โ†‘(ProjectiveSpectrum.top ๐’œ)) (f : HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) :
                        def AlgebraicGeometry.sectionInBasicOpen {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (๐’œ : โ„• โ†’ Submodule R A) [GradedAlgebra ๐’œ] (x : โ†‘(ProjectiveSpectrum.top ๐’œ)) (f : HomogeneousLocalization.AtPrime ๐’œ (HomogeneousIdeal.toIdeal x.asHomogeneousIdeal)) :

                        Given a point x corresponding to a homogeneous prime ideal, there is a (dependent) function such that, for any f in the homogeneous localization at x, it returns the obvious section in the basic open set D(f.den)

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          Given any point x and f in the homogeneous localization at x, there is an element in the stalk at x obtained by sectionInBasicOpen. This is the inverse of stalkToFiberRingHom.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Using homogeneousLocalizationToStalk, we construct a ring isomorphism between stalk at x and homogeneous localization at x for any point x in Proj.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              Proj of a graded ring as a LocallyRingedSpace

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For