Documentation

Mathlib.AlgebraicTopology.AlternatingFaceMapComplex

The alternating face map complex of a simplicial object in a preadditive category #

We construct the alternating face map complex, as a functor alternatingFaceMapComplex : SimplicialObject C ⥤ ChainComplex C ℕ for any preadditive category C. For any simplicial object X in C, this is the homological complex ... → X_2 → X_1 → X_0 where the differentials are alternating sums of faces.

The dual version alternatingCofaceMapComplex : CosimplicialObject C ⥤ CochainComplex C ℕ is also constructed.

We also construct the natural transformation inclusionOfMooreComplex : normalizedMooreComplex A ⟶ alternatingFaceMapComplex A when A is an abelian category.

References #

Construction of the alternating face map complex #

The differential on the alternating face map complex is the alternate sum of the face maps

Equations
Instances For

    Construction of the alternating face map complex functor #

    The alternating face map complex, on objects

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The alternating face map complex, on morphisms

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The alternating face map complex, as a functor

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The natural transformation which gives the augmentation of the alternating face map complex attached to an augmented simplicial object.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Construction of the natural inclusion of the normalized Moore complex #

            The inclusion map of the Moore complex in the alternating face map complex

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The inclusion map of the Moore complex in the alternating face map complex, as a natural transformation

              Equations
              Instances For

                The differential on the alternating coface map complex is the alternate sum of the coface maps

                Equations
                Instances For

                  The alternating coface map complex, on objects

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The alternating coface map complex, as a functor

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For