Behaviour of P_infty with respect to degeneracies #
For any X : SimplicialObject C
where C
is an abelian category,
the projector PInfty : K[X] ⟶ K[X]
is supposed to be the projection
on the normalized subcomplex, parallel to the degenerate subcomplex, i.e.
the subcomplex generated by the images of all X.σ i
.
In this file, we obtain degeneracy_comp_P_infty
which states that
if X : SimplicialObject C
with C
a preadditive category,
θ : [n] ⟶ Δ'
is a non injective map in SimplexCategory
, then
X.map θ.op ≫ P_infty.f n = 0
. It follows from the more precise
statement vanishing statement σ_comp_P_eq_zero
for the P q
.
(See Equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
theorem
AlgebraicTopology.DoldKan.HigherFacesVanish.comp_σ
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
{Y : C}
{X : CategoryTheory.SimplicialObject C}
{n : ℕ}
{b : ℕ}
{q : ℕ}
{φ : Y ⟶ X.toPrefunctor.obj (Opposite.op (SimplexCategory.mk (n + 1)))}
(v : AlgebraicTopology.DoldKan.HigherFacesVanish q φ)
(hnbq : n + 1 = b + q)
:
AlgebraicTopology.DoldKan.HigherFacesVanish q
(CategoryTheory.CategoryStruct.comp φ (CategoryTheory.SimplicialObject.σ X { val := b, isLt := (_ : b < n + 1 + 1) }))
theorem
AlgebraicTopology.DoldKan.σ_comp_P_eq_zero
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X : CategoryTheory.SimplicialObject C)
{n : ℕ}
{q : ℕ}
(i : Fin (n + 1))
(hi : n + 1 ≤ ↑i + q)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialObject.σ X i) ((AlgebraicTopology.DoldKan.P q).f (n + 1)) = 0
@[simp]
theorem
AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X : CategoryTheory.SimplicialObject C)
{n : ℕ}
(i : Fin (n + 1))
{Z : C}
(h : (AlgebraicTopology.AlternatingFaceMapComplex.obj X).X (n + 1) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialObject.σ X i)
(CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.PInfty.f (n + 1)) h) = CategoryTheory.CategoryStruct.comp 0 h
@[simp]
theorem
AlgebraicTopology.DoldKan.σ_comp_PInfty
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X : CategoryTheory.SimplicialObject C)
{n : ℕ}
(i : Fin (n + 1))
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.SimplicialObject.σ X i)
(AlgebraicTopology.DoldKan.PInfty.f (n + 1)) = 0
theorem
AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X : CategoryTheory.SimplicialObject C)
(n : ℕ)
{Δ' : SimplexCategory}
(θ : SimplexCategory.mk n ⟶ Δ')
(hθ : ¬CategoryTheory.Mono θ)
{Z : C}
(h : (AlgebraicTopology.AlternatingFaceMapComplex.obj X).X n ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (X.toPrefunctor.map θ.op)
(CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.PInfty.f n) h) = CategoryTheory.CategoryStruct.comp 0 h
theorem
AlgebraicTopology.DoldKan.degeneracy_comp_PInfty
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
(X : CategoryTheory.SimplicialObject C)
(n : ℕ)
{Δ' : SimplexCategory}
(θ : SimplexCategory.mk n ⟶ Δ')
(hθ : ¬CategoryTheory.Mono θ)
:
CategoryTheory.CategoryStruct.comp (X.toPrefunctor.map θ.op) (AlgebraicTopology.DoldKan.PInfty.f n) = 0