Documentation

Mathlib.Analysis.InnerProductSpace.Rayleigh

The Rayleigh quotient #

The Rayleigh quotient of a self-adjoint operator T on an inner product space E is the function λ x, ⟪T x, x⟫ / ‖x‖ ^ 2.

The main results of this file are IsSelfAdjoint.hasEigenvector_of_isMaxOn and IsSelfAdjoint.hasEigenvector_of_isMinOn, which state that if E is complete, and if the Rayleigh quotient attains its global maximum/minimum over some sphere at the point x₀, then x₀ is an eigenvector of T, and the iSup/iInf of λ x, ⟪T x, x⟫ / ‖x‖ ^ 2 is the corresponding eigenvalue.

The corollaries LinearMap.IsSymmetric.hasEigenvalue_iSup_of_finiteDimensional and LinearMap.IsSymmetric.hasEigenvalue_iSup_of_finiteDimensional state that if E is finite-dimensional and nontrivial, then T has some (nonzero) eigenvectors with eigenvalue the iSup/iInf of λ x, ⟪T x, x⟫ / ‖x‖ ^ 2.

TODO #

A slightly more elaborate corollary is that if E is complete and T is a compact operator, then T has some (nonzero) eigenvector with eigenvalue either ⨆ x, ⟪T x, x⟫ / ‖x‖ ^ 2 or ⨅ x, ⟪T x, x⟫ / ‖x‖ ^ 2 (not necessarily both).

@[inline, reducible]
noncomputable abbrev ContinuousLinearMap.rayleighQuotient {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (T : E →L[𝕜] E) (x : E) :

The Rayleigh quotient of a continuous linear map T (over or ) at a vector x is the quantity re ⟪T x, x⟫ / ‖x‖ ^ 2.

Equations
Instances For
    theorem ContinuousLinearMap.rayleigh_smul {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (T : E →L[𝕜] E) (x : E) {c : 𝕜} (hc : c 0) :
    theorem ContinuousLinearMap.iSup_rayleigh_eq_iSup_rayleigh_sphere {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (T : E →L[𝕜] E) {r : } (hr : 0 < r) :
    ⨆ (x : { x : E // x 0 }), ContinuousLinearMap.rayleighQuotient T x = ⨆ (x : (Metric.sphere 0 r)), ContinuousLinearMap.rayleighQuotient T x
    theorem ContinuousLinearMap.iInf_rayleigh_eq_iInf_rayleigh_sphere {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (T : E →L[𝕜] E) {r : } (hr : 0 < r) :
    ⨅ (x : { x : E // x 0 }), ContinuousLinearMap.rayleighQuotient T x = ⨅ (x : (Metric.sphere 0 r)), ContinuousLinearMap.rayleighQuotient T x
    theorem IsSelfAdjoint.linearly_dependent_of_isLocalExtrOn {F : Type u_3} [NormedAddCommGroup F] [InnerProductSpace F] [CompleteSpace F] {T : F →L[] F} (hT : IsSelfAdjoint T) {x₀ : F} (hextr : IsLocalExtrOn (ContinuousLinearMap.reApplyInnerSelf T) (Metric.sphere 0 x₀) x₀) :
    ∃ (a : ) (b : ), (a, b) 0 a x₀ + b T x₀ = 0
    theorem IsSelfAdjoint.hasEigenvector_of_isLocalExtrOn {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) {x₀ : E} (hx₀ : x₀ 0) (hextr : IsLocalExtrOn (ContinuousLinearMap.reApplyInnerSelf T) (Metric.sphere 0 x₀) x₀) :

    For a self-adjoint operator T, a local extremum of the Rayleigh quotient of T on a sphere centred at the origin is an eigenvector of T.

    theorem IsSelfAdjoint.hasEigenvector_of_isMaxOn {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) {x₀ : E} (hx₀ : x₀ 0) (hextr : IsMaxOn (ContinuousLinearMap.reApplyInnerSelf T) (Metric.sphere 0 x₀) x₀) :
    Module.End.HasEigenvector (T) ((⨆ (x : { x : E // x 0 }), ContinuousLinearMap.rayleighQuotient T x)) x₀

    For a self-adjoint operator T, a maximum of the Rayleigh quotient of T on a sphere centred at the origin is an eigenvector of T, with eigenvalue the global supremum of the Rayleigh quotient.

    theorem IsSelfAdjoint.hasEigenvector_of_isMinOn {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) {x₀ : E} (hx₀ : x₀ 0) (hextr : IsMinOn (ContinuousLinearMap.reApplyInnerSelf T) (Metric.sphere 0 x₀) x₀) :
    Module.End.HasEigenvector (T) ((⨅ (x : { x : E // x 0 }), ContinuousLinearMap.rayleighQuotient T x)) x₀

    For a self-adjoint operator T, a minimum of the Rayleigh quotient of T on a sphere centred at the origin is an eigenvector of T, with eigenvalue the global infimum of the Rayleigh quotient.

    theorem LinearMap.IsSymmetric.hasEigenvalue_iSup_of_finiteDimensional {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] [_i : Nontrivial E] {T : E →ₗ[𝕜] E} (hT : LinearMap.IsSymmetric T) :
    Module.End.HasEigenvalue T (⨆ (x : { x : E // x 0 }), IsROrC.re T x, x⟫_𝕜 / x ^ 2)

    The supremum of the Rayleigh quotient of a symmetric operator T on a nontrivial finite-dimensional vector space is an eigenvalue for that operator.

    theorem LinearMap.IsSymmetric.hasEigenvalue_iInf_of_finiteDimensional {𝕜 : Type u_1} [IsROrC 𝕜] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] [_i : Nontrivial E] {T : E →ₗ[𝕜] E} (hT : LinearMap.IsSymmetric T) :
    Module.End.HasEigenvalue T (⨅ (x : { x : E // x 0 }), IsROrC.re T x, x⟫_𝕜 / x ^ 2)

    The infimum of the Rayleigh quotient of a symmetric operator T on a nontrivial finite-dimensional vector space is an eigenvalue for that operator.