Documentation

Mathlib.CategoryTheory.Sites.CompatibleSheafification

In this file, we prove that sheafification is compatible with functors which preserve the correct limits and colimits.

The isomorphism between the sheafification of P composed with F and the sheafification of P ⋙ F.

Use the lemmas whisker_right_to_sheafify_sheafify_comp_iso_hom, to_sheafify_comp_sheafify_comp_iso_inv and sheafify_comp_iso_inv_eq_sheafify_lift to reduce the components of this isomorphisms to a state that can be handled using the universal property of sheafification.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] (P : CategoryTheory.Functor Cᵒᵖ D) [(F : CategoryTheory.Functor D E) → (X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(F : CategoryTheory.Functor D E) → (X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] :

    The isomorphism between the sheafification of P composed with F and the sheafification of P ⋙ F, functorially in F.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] :

      The isomorphism between the sheafification of P composed with F and the sheafification of P ⋙ F, functorially in P.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) {Z : CategoryTheory.Functor Cᵒᵖ E} (h : CategoryTheory.GrothendieckTopology.sheafify J (CategoryTheory.Functor.comp P F) Z) :
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) :
        theorem CategoryTheory.GrothendieckTopology.toSheafify_comp_sheafifyCompIso_inv_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) {Z : CategoryTheory.Functor Cᵒᵖ E} (h : CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.sheafify J P) F Z) :
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.toSheafify_comp_sheafifyCompIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) :
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.sheafifyCompIso_inv_eq_sheafifyLift {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [CategoryTheory.ConcreteCategory D] [CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ (CategoryTheory.forget D)] [CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)] :