Left exactness of sheafification #
In this file we show that sheafification commutes with finite limits.
@[simp]
theorem
CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_pt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
{X : C}
{K : Type (max v u)}
[CategoryTheory.SmallCategory K]
{F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D)}
{W : CategoryTheory.GrothendieckTopology.Cover J X}
(i : CategoryTheory.GrothendieckTopology.Cover.Arrow W)
(E : CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F
(CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.diagramFunctor J D X)
((CategoryTheory.evaluation (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D).toPrefunctor.obj
(Opposite.op W)))))
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_π_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
{X : C}
{K : Type (max v u)}
[CategoryTheory.SmallCategory K]
{F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D)}
{W : CategoryTheory.GrothendieckTopology.Cover J X}
(i : CategoryTheory.GrothendieckTopology.Cover.Arrow W)
(E : CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F
(CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.diagramFunctor J D X)
((CategoryTheory.evaluation (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D).toPrefunctor.obj
(Opposite.op W)))))
(k : K)
:
(CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation i E).π.app k = CategoryTheory.CategoryStruct.comp (E.π.app k)
(CategoryTheory.Limits.Multiequalizer.ι (CategoryTheory.GrothendieckTopology.Cover.index W (F.toPrefunctor.obj k))
i)
def
CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
{X : C}
{K : Type (max v u)}
[CategoryTheory.SmallCategory K]
{F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D)}
{W : CategoryTheory.GrothendieckTopology.Cover J X}
(i : CategoryTheory.GrothendieckTopology.Cover.Arrow W)
(E : CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F
(CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.diagramFunctor J D X)
((CategoryTheory.evaluation (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D).toPrefunctor.obj
(Opposite.op W)))))
:
CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F ((CategoryTheory.evaluation Cᵒᵖ D).toPrefunctor.obj (Opposite.op i.Y)))
An auxiliary definition to be used in the proof of the fact that
J.diagramFunctor D X
preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[inline, reducible]
abbrev
CategoryTheory.GrothendieckTopology.liftToDiagramLimitObj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
{X : C}
{K : Type (max v u)}
[CategoryTheory.SmallCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
{W : (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ}
(F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D))
(E : CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F
(CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.diagramFunctor J D X)
((CategoryTheory.evaluation (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D).toPrefunctor.obj W))))
:
E.pt ⟶ (CategoryTheory.GrothendieckTopology.diagram J (CategoryTheory.Limits.limit F) X).toPrefunctor.obj W
An auxiliary definition to be used in the proof of the fact that
J.diagramFunctor D X
preserves limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.GrothendieckTopology.preservesLimit_diagramFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
(X : C)
(K : Type (max v u))
[CategoryTheory.SmallCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
(F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D))
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.GrothendieckTopology.preservesLimitsOfShape_diagramFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
(X : C)
(K : Type (max v u))
[CategoryTheory.SmallCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
:
Equations
- CategoryTheory.GrothendieckTopology.preservesLimitsOfShape_diagramFunctor X K = CategoryTheory.Limits.PreservesLimitsOfShape.mk
instance
CategoryTheory.GrothendieckTopology.preservesLimits_diagramFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
(X : C)
[CategoryTheory.Limits.HasLimits D]
:
Equations
- CategoryTheory.GrothendieckTopology.preservesLimits_diagramFunctor X = CategoryTheory.Limits.PreservesLimitsOfSize.mk
def
CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
{K : Type (max v u)}
[CategoryTheory.SmallCategory K]
[CategoryTheory.FinCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
[CategoryTheory.Limits.PreservesLimitsOfShape K (CategoryTheory.forget D)]
[CategoryTheory.Limits.ReflectsLimitsOfShape K (CategoryTheory.forget D)]
(F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D))
(X : C)
(S : CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F
(CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.plusFunctor J D)
((CategoryTheory.evaluation Cᵒᵖ D).toPrefunctor.obj (Opposite.op X)))))
:
S.pt ⟶ (CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Limits.limit F)).toPrefunctor.obj (Opposite.op X)
An auxiliary definition to be used in the proof that J.plusFunctor D
commutes
with finite limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
{K : Type (max v u)}
[CategoryTheory.SmallCategory K]
[CategoryTheory.FinCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
[CategoryTheory.Limits.PreservesLimitsOfShape K (CategoryTheory.forget D)]
[CategoryTheory.Limits.ReflectsLimitsOfShape K (CategoryTheory.forget D)]
(F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D))
(X : C)
(S : CategoryTheory.Limits.Cone
(CategoryTheory.Functor.comp F
(CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.plusFunctor J D)
((CategoryTheory.evaluation Cᵒᵖ D).toPrefunctor.obj (Opposite.op X)))))
(k : K)
:
instance
CategoryTheory.GrothendieckTopology.preservesLimitsOfShape_plusFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
(K : Type (max v u))
[CategoryTheory.SmallCategory K]
[CategoryTheory.FinCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
[CategoryTheory.Limits.PreservesLimitsOfShape K (CategoryTheory.forget D)]
[CategoryTheory.Limits.ReflectsLimitsOfShape K (CategoryTheory.forget D)]
:
Equations
- CategoryTheory.GrothendieckTopology.preservesLimitsOfShape_plusFunctor K = CategoryTheory.Limits.PreservesLimitsOfShape.mk
instance
CategoryTheory.GrothendieckTopology.preserveFiniteLimits_plusFunctor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.HasFiniteLimits D]
[CategoryTheory.Limits.PreservesFiniteLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.GrothendieckTopology.preservesLimitsOfShape_sheafification
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
(K : Type (max v u))
[CategoryTheory.SmallCategory K]
[CategoryTheory.FinCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
[CategoryTheory.Limits.PreservesLimitsOfShape K (CategoryTheory.forget D)]
[CategoryTheory.Limits.ReflectsLimitsOfShape K (CategoryTheory.forget D)]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.GrothendieckTopology.preservesFiniteLimits_sheafification
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.HasFiniteLimits D]
[CategoryTheory.Limits.PreservesFiniteLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.preservesLimitsOfShape_presheafToSheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
(K : Type w')
[CategoryTheory.SmallCategory K]
[CategoryTheory.FinCategory K]
[CategoryTheory.Limits.HasLimitsOfShape K D]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.preservesfiniteLimits_presheafToSheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
[CategoryTheory.Limits.HasFiniteLimits D]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.instHasWeakSheafify_2
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
:
Equations
- (_ : CategoryTheory.HasWeakSheafify J D) = (_ : Nonempty (CategoryTheory.IsRightAdjoint (CategoryTheory.sheafToPresheaf J D)))
def
CategoryTheory.plusPlusSheafIsoPresheafToSheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
(D : Type w)
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
:
plusPlusSheaf
is isomorphic to an arbitrary choice of left adjoint.
Equations
Instances For
def
CategoryTheory.plusPlusFunctorIsoSheafification
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
(D : Type w)
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
:
plusPlusFunctor
is isomorphic to sheafification
.
Equations
Instances For
def
CategoryTheory.plusPlusIsoSheafify
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
(D : Type w)
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
(P : CategoryTheory.Functor Cᵒᵖ D)
:
plusPlus
is isomorphic to sheafify
.
Equations
- CategoryTheory.plusPlusIsoSheafify J D P = (CategoryTheory.sheafToPresheaf J D).mapIso ((CategoryTheory.plusPlusSheafIsoPresheafToSheaf J D).app P)
Instances For
instance
CategoryTheory.instHasSheafify
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
(D : Type w)
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
[CategoryTheory.Limits.HasFiniteLimits D]
:
Equations
- (_ : CategoryTheory.HasSheafify J D) = (_ : CategoryTheory.HasSheafify J D)
instance
CategoryTheory.instFinitaryExtensiveSheafInstCategorySheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
[CategoryTheory.FinitaryExtensive D]
[CategoryTheory.Limits.HasFiniteCoproducts D]
[CategoryTheory.Limits.HasPullbacks D]
:
Equations
- (_ : CategoryTheory.FinitaryExtensive (CategoryTheory.Sheaf J D)) = (_ : CategoryTheory.FinitaryExtensive (CategoryTheory.Sheaf J D))
instance
CategoryTheory.instAdhesiveSheafInstCategorySheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
[CategoryTheory.Adhesive D]
[CategoryTheory.Limits.HasPullbacks D]
[CategoryTheory.Limits.HasPushouts D]
:
Equations
- (_ : CategoryTheory.Adhesive (CategoryTheory.Sheaf J D)) = (_ : CategoryTheory.Adhesive (CategoryTheory.Sheaf J D))
instance
CategoryTheory.SheafOfTypes.finitary_extensive
{C : Type u}
[CategoryTheory.SmallCategory C]
(J : CategoryTheory.GrothendieckTopology C)
:
Equations
- (_ : CategoryTheory.FinitaryExtensive (CategoryTheory.Sheaf J (Type u))) = (_ : CategoryTheory.FinitaryExtensive (CategoryTheory.Sheaf J (Type u)))
instance
CategoryTheory.SheafOfTypes.adhesive
{C : Type u}
[CategoryTheory.SmallCategory C]
(J : CategoryTheory.GrothendieckTopology C)
:
Equations
- (_ : CategoryTheory.Adhesive (CategoryTheory.Sheaf J (Type u))) = (_ : CategoryTheory.Adhesive (CategoryTheory.Sheaf J (Type u)))
instance
CategoryTheory.SheafOfTypes.balanced
{C : Type u}
[CategoryTheory.SmallCategory C]
(J : CategoryTheory.GrothendieckTopology C)
:
Equations
- (_ : CategoryTheory.Balanced (CategoryTheory.Sheaf J (Type u))) = (_ : CategoryTheory.Balanced (CategoryTheory.Sheaf J (Type u)))