Documentation

Mathlib.CategoryTheory.Sites.LeftExact

Left exactness of sheafification #

In this file we show that sheafification commutes with finite limits.

An auxiliary definition to be used in the proof that J.plusFunctor D commutes with finite limits.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac {C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} {D : Type w} [CategoryTheory.Category.{max v u, w} D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X), CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [CategoryTheory.ConcreteCategory D] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ (CategoryTheory.forget D)] {K : Type (max v u)} [CategoryTheory.SmallCategory K] [CategoryTheory.FinCategory K] [CategoryTheory.Limits.HasLimitsOfShape K D] [CategoryTheory.Limits.PreservesLimitsOfShape K (CategoryTheory.forget D)] [CategoryTheory.Limits.ReflectsLimitsOfShape K (CategoryTheory.forget D)] (F : CategoryTheory.Functor K (CategoryTheory.Functor Cᵒᵖ D)) (X : C) (S : CategoryTheory.Limits.Cone (CategoryTheory.Functor.comp F (CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.plusFunctor J D) ((CategoryTheory.evaluation Cᵒᵖ D).toPrefunctor.obj (Opposite.op X))))) (k : K) :