Locally surjective morphisms #
Main definitions #
IsLocallySurjective
: A morphism of presheaves valued in a concrete category is locally surjective with respect to a grothendieck topology if every section in the target is locally in the set-theoretic image, i.e. the image sheaf coincides with the target.
Main results #
toSheafify_isLocallySurjective
:toSheafify
is locally surjective.
theorem
CategoryTheory.imageSieve_apply
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
{U : C}
(s : (CategoryTheory.forget A).toPrefunctor.obj (G.toPrefunctor.obj (Opposite.op U)))
(V : C)
(i : V ⟶ U)
:
(CategoryTheory.imageSieve f s).arrows i = ∃ (t : (CategoryTheory.forget A).toPrefunctor.obj (F.toPrefunctor.obj (Opposite.op V))),
(f.app (Opposite.op V)) t = (G.toPrefunctor.map i.op) s
def
CategoryTheory.imageSieve
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
{U : C}
(s : (CategoryTheory.forget A).toPrefunctor.obj (G.toPrefunctor.obj (Opposite.op U)))
:
Given f : F ⟶ G
, a morphism between presieves, and s : G.obj (op U)
, this is the sieve
of U
consisting of the i : V ⟶ U
such that s
restricted along i
is in the image of f
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.imageSieve_eq_sieveOfSection
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
{U : C}
(s : (CategoryTheory.forget A).toPrefunctor.obj (G.toPrefunctor.obj (Opposite.op U)))
:
theorem
CategoryTheory.imageSieve_whisker_forget
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
{U : C}
(s : (CategoryTheory.forget A).toPrefunctor.obj (G.toPrefunctor.obj (Opposite.op U)))
:
theorem
CategoryTheory.imageSieve_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
{U : C}
(s : (CategoryTheory.forget A).toPrefunctor.obj (F.toPrefunctor.obj (Opposite.op U)))
:
CategoryTheory.imageSieve f ((f.app (Opposite.op U)) s) = ⊤
def
CategoryTheory.IsLocallySurjective
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
:
A morphism of presheaves f : F ⟶ G
is locally surjective with respect to a grothendieck
topology if every section of G
is locally in the image of f
.
Equations
- CategoryTheory.IsLocallySurjective J f = ∀ (U : C) (s : (CategoryTheory.forget A).toPrefunctor.obj (G.toPrefunctor.obj (Opposite.op U))), CategoryTheory.imageSieve f s ∈ J.sieves U
Instances For
theorem
CategoryTheory.isLocallySurjective_iff_imagePresheaf_sheafify_eq_top
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
:
theorem
CategoryTheory.isLocallySurjective_iff_imagePresheaf_sheafify_eq_top'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{F : CategoryTheory.Functor Cᵒᵖ (Type w)}
{G : CategoryTheory.Functor Cᵒᵖ (Type w)}
(f : F ⟶ G)
:
theorem
CategoryTheory.isLocallySurjective_iff_isIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{F : CategoryTheory.Sheaf J (Type w)}
{G : CategoryTheory.Sheaf J (Type w)}
(f : F ⟶ G)
:
theorem
CategoryTheory.isLocallySurjective_iff_whisker_forget
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
:
theorem
CategoryTheory.isLocallySurjective_of_surjective
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
(H : ∀ (U : Cᵒᵖ), Function.Surjective ⇑(f.app U))
:
theorem
CategoryTheory.isLocallySurjective_of_iso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F : CategoryTheory.Functor Cᵒᵖ A}
{G : CategoryTheory.Functor Cᵒᵖ A}
(f : F ⟶ G)
[CategoryTheory.IsIso f]
:
theorem
CategoryTheory.IsLocallySurjective.comp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{A : Type u'}
[CategoryTheory.Category.{v', u'} A]
[CategoryTheory.ConcreteCategory A]
{F₁ : CategoryTheory.Functor Cᵒᵖ A}
{F₂ : CategoryTheory.Functor Cᵒᵖ A}
{F₃ : CategoryTheory.Functor Cᵒᵖ A}
{f₁ : F₁ ⟶ F₂}
{f₂ : F₂ ⟶ F₃}
(h₁ : CategoryTheory.IsLocallySurjective J f₁)
(h₂ : CategoryTheory.IsLocallySurjective J f₂)
:
noncomputable def
CategoryTheory.sheafificationIsoImagePresheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
(F : CategoryTheory.Functor Cᵒᵖ (Type (max u v)))
:
The image of F
in J.sheafify F
is isomorphic to the sheafification.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.toSheafify_isLocallySurjective
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{B : Type w}
[CategoryTheory.Category.{max u v, w} B]
[CategoryTheory.ConcreteCategory B]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ B]
[∀ (P : CategoryTheory.Functor Cᵒᵖ B) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ B) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P))
(CategoryTheory.forget B)]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget B)]
[∀ (α β : Type (max u v)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) B]
(F : CategoryTheory.Functor Cᵒᵖ B)
: