Documentation

Mathlib.LinearAlgebra.CliffordAlgebra.Grading

Results about the grading structure of the clifford algebra #

The main result is CliffordAlgebra.gradedAlgebra, which says that the clifford algebra is a ℤ₂-graded algebra (or "superalgebra").

def CliffordAlgebra.evenOdd {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (i : ZMod 2) :

The even or odd submodule, defined as the supremum of the even or odd powers of (ι Q).range. evenOdd 0 is the even submodule, and evenOdd 1 is the odd submodule.

Equations
Instances For
    theorem CliffordAlgebra.ι_mul_ι_mem_evenOdd_zero {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m₁ : M) (m₂ : M) :
    def CliffordAlgebra.GradedAlgebra.ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
    M →ₗ[R] DirectSum (ZMod 2) fun (i : ZMod 2) => (CliffordAlgebra.evenOdd Q i)

    A version of CliffordAlgebra.ι that maps directly into the graded structure. This is primarily an auxiliary construction used to provide CliffordAlgebra.gradedAlgebra.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CliffordAlgebra.GradedAlgebra.ι_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
      (CliffordAlgebra.GradedAlgebra.ι Q) m = (DirectSum.of (fun (i : ZMod 2) => (CliffordAlgebra.evenOdd Q i)) 1) { val := (CliffordAlgebra.ι Q) m, property := (_ : (CliffordAlgebra.ι Q) m CliffordAlgebra.evenOdd Q 1) }
      theorem CliffordAlgebra.GradedAlgebra.lift_ι_eq {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (i' : ZMod 2) (x' : (CliffordAlgebra.evenOdd Q i')) :
      ((CliffordAlgebra.lift Q) { val := CliffordAlgebra.GradedAlgebra.ι Q, property := (_ : ∀ (m : M), (CliffordAlgebra.GradedAlgebra.ι Q) m * (CliffordAlgebra.GradedAlgebra.ι Q) m = (algebraMap R (DirectSum (ZMod 2) fun (i : ZMod 2) => (CliffordAlgebra.evenOdd Q i))) (Q m)) }) x' = (DirectSum.of (fun (i : ZMod 2) => (CliffordAlgebra.evenOdd Q i)) i') x'

      The clifford algebra is graded by the even and odd parts.

      Equations
      • One or more equations did not get rendered due to their size.
      theorem CliffordAlgebra.evenOdd_induction {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (n : ZMod 2) {P : (x : CliffordAlgebra Q) → x CliffordAlgebra.evenOdd Q nProp} (hr : ∀ (v : CliffordAlgebra Q) (h : v LinearMap.range (CliffordAlgebra.ι Q) ^ ZMod.val n), P v (_ : v ⨆ (i : { n_1 : // n_1 = n }), LinearMap.range (CliffordAlgebra.ι Q) ^ i)) (hadd : ∀ {x y : CliffordAlgebra Q} {hx : x CliffordAlgebra.evenOdd Q n} {hy : y CliffordAlgebra.evenOdd Q n}, P x hxP y hyP (x + y) (_ : x + y CliffordAlgebra.evenOdd Q n)) (hιι_mul : ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x CliffordAlgebra.evenOdd Q n}, P x hxP ((CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x) (_ : (CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x CliffordAlgebra.evenOdd Q n)) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q n) :
      P x hx

      To show a property is true on the even or odd part, it suffices to show it is true on the scalars or vectors (respectively), closed under addition, and under left-multiplication by a pair of vectors.

      theorem CliffordAlgebra.even_induction {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {P : (x : CliffordAlgebra Q) → x CliffordAlgebra.evenOdd Q 0Prop} (hr : ∀ (r : R), P ((algebraMap R (CliffordAlgebra Q)) r) (_ : (algebraMap R (CliffordAlgebra Q)) r CliffordAlgebra.evenOdd Q 0)) (hadd : ∀ {x y : CliffordAlgebra Q} {hx : x CliffordAlgebra.evenOdd Q 0} {hy : y CliffordAlgebra.evenOdd Q 0}, P x hxP y hyP (x + y) (_ : x + y CliffordAlgebra.evenOdd Q 0)) (hιι_mul : ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x CliffordAlgebra.evenOdd Q 0}, P x hxP ((CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x) (_ : (CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x CliffordAlgebra.evenOdd Q 0)) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 0) :
      P x hx

      To show a property is true on the even parts, it suffices to show it is true on the scalars, closed under addition, and under left-multiplication by a pair of vectors.

      theorem CliffordAlgebra.odd_induction {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {P : (x : CliffordAlgebra Q) → x CliffordAlgebra.evenOdd Q 1Prop} (hι : ∀ (v : M), P ((CliffordAlgebra.ι Q) v) (_ : (CliffordAlgebra.ι Q) v CliffordAlgebra.evenOdd Q 1)) (hadd : ∀ {x y : CliffordAlgebra Q} {hx : x CliffordAlgebra.evenOdd Q 1} {hy : y CliffordAlgebra.evenOdd Q 1}, P x hxP y hyP (x + y) (_ : x + y CliffordAlgebra.evenOdd Q 1)) (hιι_mul : ∀ (m₁ m₂ : M) {x : CliffordAlgebra Q} {hx : x CliffordAlgebra.evenOdd Q 1}, P x hxP ((CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x) (_ : (CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x CliffordAlgebra.evenOdd Q 1)) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 1) :
      P x hx

      To show a property is true on the odd parts, it suffices to show it is true on the vectors, closed under addition, and under left-multiplication by a pair of vectors.