Documentation

Mathlib.Topology.Category.Profinite.Limits

Explicit limits and colimits #

This file collects some constructions of explicit limits and colimits in Profinite, which may be useful due to their definitional properties.

Main definitions #

def Profinite.pullback {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :

The pullback of two morphisms f, g in Profinite, constructed explicitly as the set of pairs (x, y) such that f x = g y, with the topology induced by the product.

Equations
Instances For
    def Profinite.pullback.fst {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :

    The projection from the pullback to the first component.

    Equations
    Instances For
      def Profinite.pullback.snd {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :

      The projection from the pullback to the second component.

      Equations
      Instances For

        Construct a morphism to the explicit pullback given morphisms to the factors which are compatible with the maps to the base. This is essentially the universal property of the pullback.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Profinite.pullback.cone_pt {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :

          The pullback cone whose cone point is the explicit pullback.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The explicit pullback cone is a limit cone.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The isomorphism from the explicit pullback to the abstract pullback.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def Profinite.pullbackHomeoPullback {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :
                (Profinite.pullback f g).toCompHaus.toTop ≃ₜ (CategoryTheory.Limits.pullback f g).toCompHaus.toTop

                The homeomorphism from the explicit pullback to the abstract pullback.

                Equations
                Instances For
                  theorem Profinite.pullback_fst_eq {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :
                  theorem Profinite.pullback_snd_eq {X : Profinite} {Y : Profinite} {B : Profinite} (f : X B) (g : Y B) :

                  The coproduct of a finite family of objects in Profinite, constructed as the disjoint union with its usual topology.

                  Equations
                  Instances For
                    def Profinite.finiteCoproduct.ι {α : Type} [Finite α] (X : αProfinite) (a : α) :

                    The inclusion of one of the factors into the explicit finite coproduct.

                    Equations
                    Instances For
                      def Profinite.finiteCoproduct.desc {α : Type} [Finite α] (X : αProfinite) {B : Profinite} (e : (a : α) → X a B) :

                      To construct a morphism from the explicit finite coproduct, it suffices to specify a morphism from each of its factors. This is essentially the universal property of the coproduct.

                      Equations
                      Instances For

                        The coproduct cocone associated to the explicit finite coproduct.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]

                          The explicit finite coproduct cocone is a colimit cocone.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            noncomputable def Profinite.coproductIsoCoproduct {α : Type} [Finite α] (X : αProfinite) :

                            The isomorphism from the explicit finite coproducts to the abstract coproduct.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              noncomputable def Profinite.coproductHomeoCoproduct {α : Type} [Finite α] (X : αProfinite) :
                              (Profinite.finiteCoproduct X).toCompHaus.toTop ≃ₜ ( X).toCompHaus.toTop

                              The homeomorphism from the explicit finite coproducts to the abstract coproduct.

                              Equations
                              Instances For
                                theorem Profinite.finiteCoproduct.ι_jointly_surjective {α : Type} [Finite α] (X : αProfinite) (R : (Profinite.finiteCoproduct X).toCompHaus.toTop) :
                                ∃ (a : α) (r : (X a).toCompHaus.toTop), R = (Profinite.finiteCoproduct.ι X a) r
                                theorem Profinite.finiteCoproduct.ι_desc_apply {α : Type} [Finite α] (X : αProfinite) {B : Profinite} {π : (a : α) → X a B} (a : α) (x : (CategoryTheory.forget Profinite).toPrefunctor.obj (X a)) :