Category of sheaves is abelian #
Let C, D
be categories and J
be a grothendieck topology on C
, when D
is abelian and
sheafification is possible in C
, Sheaf J D
is abelian as well (sheafIsAbelian
).
Hence, presheafToSheaf
is an additive functor (presheafToSheaf_additive
).
TODO: This file should be moved to CategoryTheory/Sites
.
instance
CategoryTheory.hasFiniteProductsSheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[CategoryTheory.Abelian D]
{J : CategoryTheory.GrothendieckTopology C}
:
Equations
instance
CategoryTheory.sheafIsAbelian
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[CategoryTheory.Abelian D]
{J : CategoryTheory.GrothendieckTopology C}
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
[CategoryTheory.Limits.HasFiniteLimits D]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.presheafToSheaf_additive
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type w}
[CategoryTheory.Category.{max v u, w} D]
[CategoryTheory.Abelian D]
{J : CategoryTheory.GrothendieckTopology C}
[∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X),
CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[CategoryTheory.ConcreteCategory D]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[(X : C) →
CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ
(CategoryTheory.forget D)]
[CategoryTheory.ReflectsIsomorphisms (CategoryTheory.forget D)]
: